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A question sometimes posed with
regard to the study of metabolic sys-
tems is whether it is possible to ob-
tain the values of a pathway's param-
eters, i.e. KIfIIS, V_s etc., from intact
systems. The usual method has tradi-
tionally been to obtain such param-
eters from in vitro studies; however,
it is doubtful that the values deter-
mined In vitro accurately reflect the
In vivo situation. On the other hand,
the variables of intact pathways,
namely the flux and metabolite con-
centrations, are more easily esti-
mated. The question then arises as to
whether it is possible, given a set of
measured variables, to determine the
set of parameters on which they de-
pend. Clearly, it is possible to do the
reverse, i.e, by computer simulation
and a set of parameters one can de-
termine the variables.

The approach which seeks to re-
late the variables of a system to its
parameters is sometimes known as
system identification and has been
widely applied to chemical engineer-
ing and other non-linear dynamic
problems. The aim of this project is
to train an artificial neural network
(Arnit, 1989,Marenetal., 1990,MUller
& Reinhardt 1990, Freeman &
Skapura, 1991, Zurada, 1992.) to re-
late the variables of an intact meta-
bolic pathway to the parameters of
the system. If the net successfully
learnt to reflect the correct param-
eters when presented with the vari-
ables, the problem would have been
solved.

The approach that is used is as
follows. Select the pathway of inter-
est, say a linear chain, and build a
computer model of the pathway.
Perform many simulations with the
model using random sets of param-
eters to obtain the steady-state val-
ues for the variables. Using the simu-
Iationdata, train a neural netto relate
the variables (the inputs) to the pa-
rameters (the outputs). Next, present
thenetwith'random'(orexperimen-
tal) variables and ask it for the pa-
rameters. A check on the network's
predictions can be done by running
asirnulation with the parameters pro-
vided by the network and seeing if
they generate the variables used as
the input to the net. (Note that this
check will not quarantee that the
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parameters predicted from experi-
mental data are the real values, only
that the predicted parameters are a
consistent set.) The result would be
that we could in fact obtain the
(enzymatic) parameters of a meta-
bolic network by measuring the vari-
ables alone (see Figure 1). The pur-
pose of the present study was there-
fore to establish whether this might
indeed be the case.

By way of illustration, and for
computational simplicity, we con-
centrate here on a simple, two-step

linear pathway, with each enzyme (l
substrate/1 product) possessing re-
versible Michaelis-Menten kinetics.
The system is shown below.

x.-->S,-->X,
where Xo and Xl are used to indicate
that the concentrations of these
metabolites are held constant (a nec-
essary requirement for the mainte-
nance of a steady state).

Generation of the data
The net was trained by varying the
V_values of each enzyme and both
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Figure 1 Diagram showing the general approach to the problem as described in the text. Notation is as
follows. Vrefers to the variable matrix and P the parameter matrix. The box labelled T comprises the
training block, made up ofthetrainlng set PI' derived from the model and the network's present estimates
of the parameters. ~ refers to the 'experimental' intput variable matrix and P refers to the output
parameter set derived from the experimental set.
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forward K. values. The reverse K.s
were held constant The conoentra-
tion of S, and the steady-state flux
were recorded for each parameter
set. In addition, each parameter set
was applied using three different
concentrations of the starting
metabolite Xo so that we could ob-
tain three sets of variables for the
same set of parameters (in an experi-
mentally realizable fashion), and so
aid the training process. The param-
eters of the system were varied as
follows. Each parameter was first
assigned a uniform random number,
v,between 0 and 2.0 which was then
used to generate a non-skewed dis-
tribution spanning two decades us-
ing the formula 10". The reason why
the parameters were generated in
this manner was so that the distribu-
tion of values would not be confined
to the upper decades of the range
and thus there would be a roughly
equal number of random values be-
tween 1 and 10 as there would be
between 10 and 100. In this way, up
to 200 random sets of K and V
values were generated, f;'om whi~
the steady-state conoentrations of S,
and the fluxes were obtained. In ad-
dition, each set of random param-
eters was applied to three values of
X" namely at 1.0, 10.0 and 100.0. In
all, 600 different sets of data were
generated and presented to the neu-
ral network.

The neural network
All neural network runs were per-
formed on an IBM PC clone (486
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incorporating an accelerator board
containing an AT & T DSP32C digital
signal prooessing chip) using the
software package NeuralDesk (Neu-
raJComputer Sciences, Totton, South-
ampton, UK) running under Win-
dows3.1. This set-up is by no means
unique and the neural network runs
could just as easily have been done
using a different computer (Macin-
tosh, Unix workstation, etc.) and dif-
ferent software.

Training was done on a fully con-
neeted feedforward net which had
nine inputs (corresponding to the
three sets of three variables from
each value of X"), four outputs corre-
sponding to the parameters, and one
hidden layer of four units. All data
presented to the net were first trans-
formed using lo!!,oand then normal-
ized to fall between 0 and 1.0. Train-
ing was performed using a stochastic
back-propagation algorithm (Neural
Computer Sciences, 1990 until the
mean square error fell to below 0.01.

An example
Fixed parameters were as follows:
K.. r ~ 567.0
K.q2 = 13.4
Xl = 0.1 mM
K_,~ 23.4mM
K_,= 12.3mM

The two rate laws governing each
reaction were of the form:

v = V""",/Km[(Sj- S,IKeq)
0+ S/Kmr + S,IKmr)

" ,- '
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The steady state of the pathway
was evaluated usinga Newton-based
iterative method (written in-house
using a Zortech C/C ++ compiler) and
the test for convergence was the sums
of squares deviation of the rate of
change of S, from zero. The different
parameter sets were calculated ac-
cording to the method described
above. The results of each simula-
tion were written out to two files, one
designated the inputfilewhich con-
tained the variables and another des-
ignated the output file which con-
tained the parameters. The net was
then trained using these files. Con-
vergence was very rapid (of the or-
der of seconds) and further test data
(a separate set from those used in the
training phase) confirmed that the
net had generalized.
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